PERFORMANCE CHARTS

Altitude Conversion Chart .................................................. 9-1
Takeoff Performance ............................................................. 9-2
Climb Performance .............................................................. 9-3
Cruise Performance - True Airspeed ..................................... 9-4
Cruise Performance - Range ................................................ 9-5
Stalling Speed vs Angle of Bank ......................................... 9-6
Stalling Speed vs Weight ..................................................... 9-7
Glide Performance .............................................................. 9-8
Landing Performance .......................................................... 9-9
Power Setting Table ............................................................ 9-10

WARNING

Performance information derived by extrapolation beyond the limits shown on the charts should not be used for flight planning purposes.
ALTITUDE CONVERSION CHART

This chart should be used to determine density altitude from existing temperature and pressure altitude conditions for use with performance charts.
TAKEOFF PERFORMANCE
PAVED LEVEL DRY RUNWAY
GROSS WT. 2650 LBS.
FULL POWER BEFORE BRAKE RELEASE
ZERO WIND
EXTRAPOLATION OF CHART ABOVE 7000 FT. IS INVALID

NOTE: SEE SECTION 7 FOR EFFECTS OF AIR CONDITIONING INSTALLATION ON PERFORMANCE.
CLIMB PERFORMANCE

POWER - FULL THROTTLE
GEAR AND FLAPS RETRACTED
GROSS WT. 2650 LBS.
MIXTURE-LEAN PER LYCOMING INSTRUCTIONS
100 MPH CAS

NOTE: SEE SECTION 7 FOR EFFECTS OF AIR CONDITIONING INSTALLATION ON PERFORMANCE.

PERFORMANCE CHARTS
REVISED: JUNE 18, 1974
Cruise Performance - True Airspeed

Gross Wt. 2650 lbs.
Mixture-Lean per Lycoming Instructions

Density Altitude (ft.)

True Airspeed (mph)

Note: See Section 7 for effects of air conditioning installation on performance.
Cruise Performance - Range

Gross wt. 2650 lbs.
48 gal. fuel
Best economy
Clean configuration
Mixture - Lean per Lycoming instructions

NOTE: See section 7 for effects of air conditioning installation on performance.
STALLING SPEED VS. ANGLE OF BANK

GROSS WEIGHT - 2650
POWER OFF

STALL SPEED - MPH CAS

ANGLE OF BANK - DEGREES
STALLING SPEED VS WEIGHT

GROSS WEIGHT - POUNDS

STALL SPEED - MPH CAS

POWER OFF

GROSS WEIGHT - POUNDS

STALL SPEED - MPH CAS

GEAR EXTENDED - FLAPS RETRACTED

GEAR EXTENDED - FLAPS 40°

PERFORMANCE CHARTS
ISSUED: JULY 13, 1973

9-7
GLIDE PERFORMANCE

GROSS WT. 2650 LBS.
105 MPH
PROP WINDMILLING
0° FLAPS - GEAR UP*
NO WIND

*IF EQUIPPED WITH BACKUP GEAR EXTENDER SYSTEM
HOLD OR LATCH EMERGENCY GEAR LEVER IN OVERRIDE UP POSITION.

ALTITUDE ABOVE TERRAIN - FT.

GLIDE RANGE - MILES

PERFORMANCE CHARTS
REVISED: JANUARY 31, 1987
LANDING PERFORMANCE

FLAPS 40° POWER OFF PAVED LEVEL DRY RUNWAY
NO WIND MAXIMUM BRAKING
GROSS WEIGHT 2650 LBS.

NOTE: SEE SECTION 7 FOR EFFECTS OF AIR CONDITIONING
INSTALLATION ON PERFORMANCE.
### Power Setting Table - Lycoming Model 10-360-C Series, 200 HP Engine

<table>
<thead>
<tr>
<th>Press. Alt Feet</th>
<th>Std. Alt Temp °F</th>
<th>110 HP - 55% Rated RPM AND MAN. PRESS. 2100</th>
<th>130 HP - 65% Rated RPM AND MAN. PRESS. 2100</th>
<th>150 HP - 75% Rated RPM AND MAN. PRESS. 2400</th>
<th>Press. Alt Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>59</td>
<td>22.9</td>
<td>25.9</td>
<td>25.5</td>
<td>SL</td>
</tr>
<tr>
<td>1,000</td>
<td>55</td>
<td>22.7</td>
<td>25.6</td>
<td>25.2</td>
<td>1,000</td>
</tr>
<tr>
<td>2,000</td>
<td>52</td>
<td>22.4</td>
<td>25.4</td>
<td>25.0</td>
<td>2,000</td>
</tr>
<tr>
<td>3,000</td>
<td>48</td>
<td>22.2</td>
<td>25.1</td>
<td>24.7</td>
<td>3,000</td>
</tr>
<tr>
<td>4,000</td>
<td>45</td>
<td>21.9</td>
<td>24.8</td>
<td>24.4</td>
<td>4,000</td>
</tr>
<tr>
<td>5,000</td>
<td>41</td>
<td>21.7</td>
<td>FT</td>
<td>FT</td>
<td>5,000</td>
</tr>
<tr>
<td>6,000</td>
<td>38</td>
<td>21.4</td>
<td>21.5</td>
<td>--</td>
<td>6,000</td>
</tr>
<tr>
<td>7,000</td>
<td>34</td>
<td>21.2</td>
<td>21.3</td>
<td>--</td>
<td>7,000</td>
</tr>
<tr>
<td>8,000</td>
<td>31</td>
<td>21.0</td>
<td>--</td>
<td>21.0</td>
<td>8,000</td>
</tr>
<tr>
<td>9,000</td>
<td>27</td>
<td>FT</td>
<td>18.4</td>
<td>--</td>
<td>9,000</td>
</tr>
<tr>
<td>10,000</td>
<td>23</td>
<td>--</td>
<td>18.3</td>
<td>--</td>
<td>10,000</td>
</tr>
<tr>
<td>11,000</td>
<td>19</td>
<td>--</td>
<td>18.1</td>
<td>--</td>
<td>11,000</td>
</tr>
<tr>
<td>12,000</td>
<td>16</td>
<td>--</td>
<td>17.8</td>
<td>--</td>
<td>12,000</td>
</tr>
<tr>
<td>13,000</td>
<td>12</td>
<td>--</td>
<td>17.6</td>
<td>--</td>
<td>13,000</td>
</tr>
<tr>
<td>14,000</td>
<td>9</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>14,000</td>
</tr>
</tbody>
</table>

To maintain constant power, correct manifold pressure approximately 0.16" Hg for each 10°F variation in inlet air temperature from standard altitude temperature. Add manifold pressure for air temperatures above standard; subtract for temperatures below standard.